martes, 19 de octubre de 2010

SECADO
El secado de sólidos consiste en separar pequeñas cantidades de agua u otro líquido de un material sólido con el fin de reducir el contenido de líquido residual hasta un valor aceptablemente bajo. El secado es habitualmente la etapa final de una serie de operaciones y con frecuencia, el producto que se extrae de un secador para empaquetado. La operación de secado es una operación de transferencia de masa de contacto gas- sólido, donde la humedad contenida en el sólido se transfiere por evaporación hacia la fase gaseosa, en base a la diferencia entre la presión de vapor ejercida por el sólido húmedo y la presión parcial de vapor de la corriente gaseosa. De modo general se pueden clasificar las operaciones de secado en continuas y discontinuas. En las operaciones continuas pasan continuamente a través del equipo tanto la sustancia a secar como el gas. La operación discontinua en la práctica se refiere generalmente a un proceso semicontinuo, en el que se expone una cierta cantidad de sustancia a secar a una corriente de gas que fluye continuamente en la que se evapora la humedad. La característica esencial del proceso de secado es la eliminación de un liquido por conversión en vapor, que se separa del sólido.                              TIPOS DE CORRIENTES DEL SECADO Y SUS PROPIEDADES                                                                               EN EL SECADO HAY TRES TIPOS DE CORRIENTES; UNA DE ENTRADA Y DOS DE SALIDA:
LA CORRIENTE DE ENTRADA ES UN SÓLIDO.
UNA DE LAS CORRIENTES DE SALIDA ES UN GAS.
Y LA OTRA CORRIENTE DE SALIDA ES UN SÓLIDO.
                                           USO DEL SECADO
El secado se utiliza ampliamente en la tecnología química y es muy común que sea la última operación en la producción precedente a la salida del producto resultante.
•La operación de secado es ampliamente utilizada en la industria química, a pesar de ser más económico la eliminación de humedad por métodos mecánicos que por métodos térmicos.
•En gran parte la practica del secado es mas un arte que una ciencia, si bien explicable por los medios científicos.  
EQUIPOS DE SECADO
• Secaderos de calentamiento directo.
•Equipos discontinuos
•Secaderos de bandejas con corriente de aire.
•Secaderos de cama fluidizada.
•Secaderos con circulación a través del lecho sólido.
•b) Equipos continuos
•Secaderos de túnel.
•Secaderos neumáticos.
•Secaderos ciclónicos.
•Secaderos de cama chorreada.
•Secaderos de cama vibratoria.
• Secadero de cama fluidizada. 

Diagrama de flujo de secado
ALGUNAS IMÁGENES DE SECADORES




martes, 27 de julio de 2010

 tipos de tamices rotativos                                                                                               Los tamices se utilizan para separar los sólidos contenidos en líquidos. Existe
una amplia gama de tamices, diseñados para muy diversas aplicaciones, pero
en los últimos años el desarrollo de los tamices rotativos ha supuesto un
destacable avance tecnológico, ya que entre otras ventajas son capaces de
separar partículas de menos de 1 mm de diámetro.
Los tamices rotativos Roto-Sieve de TEFSA, destacan por su eficacia en la separación de sólidos, fácil mantenimiento y funcionamiento automático. Son capaces de eliminar una gran cantidad de materia en suspensión, por lo que son utilizados en depuración de aguas residuales, papeleras, cerveceras, industrias alimentarias, bodegas, etc.

martes, 13 de julio de 2010

CRISTALES

En física del estado sólido y química, un cristal es un sólido homogéneo que presenta una estructura interna ordenada de sus partículas reticulares, sean átomos, iones o moléculas. La palabra proviene del griego crystallos, nombre que dieron los griegos a una variedad del cuarzo, que hoy se llama cristal de roca. La mayoría de los cristales naturales se forman a partir de la cristalización de gases a presión en la pared interior de cavidades rocosas llamadas geodas. La calidad, tamaño, color y forma de los cristales dependen de la presión y composición de gases en dichas geodas (burbujas) y de la temperatura y otras condiciones del magma donde se formen.
Aunque el
vidrio se le suele confundir con un tipo de cristal, en realidad el vidrio no posee las propiedades moleculares necesarias para ser considerado como tal. El vidrio, a diferencia de un cristal, es amorfo. Los cristales se distinguen de los sólidos amorfos, no solo por su geometría regular, sino también por la anisotropía de sus propiedades (que no son las mismas en todas las direcciones) y por la existencia de elementos de simetría. Los cristales están formados por la unión de partículas dispuestas de forma regular siguiendo un esquema determinado que se reproduce, en forma y orientación, en todo el cristal y que crea una red tridimensional (estructura reticular) que generalmente es muy refractiva.
En un cristal, los átomos e iones se encuentran organizados de forma simétrica en redes elementales, que se repiten indefinidamente formando una
estructura cristalina. Estas partículas pueden ser átomos unidos por enlaces covalentes (diamante y metales) o iones unidos por electrovalencia (cloruro de sodio). En otras palabras, los cristales podrían considerarse moléculas colosales, pues que poseen tales propiedades, a pesar de su tamaño macroscópico. Por tanto, un cristal suele tener la misma forma de la estructura cristalina que la conforma, amenos que haya sido erosionado o mutilado de alguna manera.
Del estudio de la estructura, composición, formación y propiedades de los cristales se ocupa la
cristalografía.

CLASES DE CRISTALES:
1.Cúbico (cubo)
2.Tetragonal (prisma recto cuadrangular)
3.Ortorrómbico (prisma recto de base rómbica)
4.Monoclínico (prisma oblicuo de base rombica)
5.Triclínico (paralelepípedo cualquiera)
6.Romboédrico (paralepípedo cuyas caras son rombos)
7.Hexagonal (prisma recto de base hexagonal)

martes, 25 de mayo de 2010

CAUDALIMETRO ULTRASONICO para LIQUIDOS CON o SIN SOLIDOS EN SUSPENSION
Mide, calcula e Indica Velocidad, Caudal y Volumen Total. No intrusivo, mide el Tiempo que tarda ultrasonido en atravesar el fluido
Al poder medir a través de cualquier material sin Cortar, Abrir ni Vaciar el caño se presta para Diagnóstico, para medir Varios Puntos aún de distinto diámetro con un sólo instrumento, para medir en
Cañerías Verdaderamente Grandes muy difíciles para otros equipos, y en Cañerías Bajo Presión.
Muy utilizado por Municipalidades e Industrias que no justifican medidores dedicados pero necesitan medir, de vez en cuando,

Al poder medir a través de cualquier material sin Cortar, Abrir ni Vaciar el caño se presta
para Diagnóstico, para medir Varios Puntos aún de distinto diámetro con un sólo instrumento, para medir en
Cañerías Verdaderamente Grandes muy difíciles para otros equipos, y en Cañerías Bajo Presión.
Muy utilizado por Municipalidades e Industrias que no justifican medidores dedicados pero necesitan medir, de vez en cuando,
Al poder medir a través de cualquier material sin Cortar, Abrir ni Vaciar el caño se presta
para Diagnóstico, para medir Varios Puntos aún de distinto diámetro con un sólo instrumento, para medir en
Cañerías Verdaderamente Grandes muy difíciles para otros equipos, y en Cañerías Bajo Presión.
Muy utilizado por Municipalidades e Industrias que no justifican medidores dedicados pero necesitan medir, de vez en cuando,algunos puntos.
.

Medidores de presión
La mayoría de los dispositivos que permiten medir la presión directamente miden en realidad la diferencia entre la presión absoluta y la presión atmosférica. El resultado obtenido se conoce como presión manométrica.
Presiónabsoluta=presiónmanometica+presión atmosférica
La presión atmosférica al nivel del mar es 101.3 kPa, o 14.7 lb/in2 . Debido a que la presión atmosférica participa en gran número de cálculos, con frecuencia se usa una unidad de presión de una atmósfera (atm), definida como la presión media que la atmósfera ejerce al nivel del mar, o sea, 14.7 lb/in2 .

martes, 11 de mayo de 2010

BOMBAS HIDRAULICAS
Una bomba hidráulica es un dispositivo tal que recibiendo energía mecánica de una fuente exterior la transforma en una energía de presión transmisible de un lugar a otro de un sistema hidráulico a través de un líquido cuyas moléculas estén sometidas precisamente a esa presión . Las bombas hidráulicas son los elementos encargados de impulsar el aceite o líquido hidráulico, transformando la energía mecánica rotatoria en energía hidráulica.El propósito de una bomba hidráulica es suministrar un flujo de líquido a un sistema hidráulico. La bomba no crea la presión de sistema, puesto que la presión se puede crear solamente por una resistencia al flujo. Mientras que la bomba proporciona flujo, transmite una fuerza al líquido. Dado que el flujo de líquido encuentra resistencia, esta fuerza se vuelve una presión. La resistencia al flujo es el resultado de una restricción o de una obstrucción en la trayectoria del mismo. Esta restricción es normalmente el trabajo logrado por el sistema hidráulico, pero puede ser también debido a restricciones de líneas, de guarniciones, y de válvulas dentro del sistema. Así, la presión es controlada por la carga impuesta sobre el sistema o la acción de un dispositivo regulador de presión
Una bomba debe tener una fuente continua de líquido disponible en el puerto de entrada para suministrar el líquido al sistema. El proceso de transformación de energía se efectúa en dos etapas: aspiración y descarga. Aspiración
Al comunicarse energía mecánica a la bomba, ésta comienza a girar y con esto se genera una disminución de la presión en la entrada de la bomba, como el depósito de aceite se encuentra sometido a presión atmosférica, se genera entonces una diferencia de presiones lo que provoca la succión y con ello el impulso del aceite hacia la entrada de la bomba.
Descarga
Al entrar aceite, la bomba lo toma y lo traslada hasta la salida y se asegura por la forma constructiva que el fluido no retroceda. Dado esto, el fluido no encontrará mas alternativa que ingresar al sistema que es donde se encuentra espacio disponible, consiguiéndose así la descarga.
Las bombas son clasificadas normalmente por su salida volumétrica y presión. La salida volumétrica es la cantidad de líquido que una bomba puede entregar a su puerto de salida en cierto periodo de tiempo a una velocidad dada. se expresa generalmente en términos de pulgadas cúbicas por revolución.
Válvula industrial


Una Válvula Industrial es el tipo de Válvula que como elemento mecánico se emplea para regular, permitir o impedir el paso de un fluido a través de una instalación industrial o maquina de cualquier tipo.
//
Tipos de válvulas
Válvula de Globo (O de asiento)
Artículo principal: Válvula de asiento


Valvula de globo.
Válvula que sirve para regular y por tanto para la función de todo o nada. El elemento de cierre asienta sobre una sección circular. A medida que el elemento de cierre se aproxima al asiento, sección de paso se reduce y por tanto aumenta la pérdida de carga disminuyendo el caudal.
Válvula de Retención Artículo principal: Válvula antirretorno
La función esencial de una válvula de retención es impedir el paso del fluido en una dirección determinada, y no retorno (retén). Mientras el sentido del fluido es el correcto, la válvula de retención se mantiene abierta, cuando el fluido pierde velocidad o presión, la válvula de retención tiende a cerrarse, evitando así el retroceso del fluido. La diferencia de presiones entre la entrada y la salida hace que la válvula esté abierta o cerrada.
También se denomina anti-retorno.
Válvula de Compuerta
La apertura y cierre se produce mediante el movimiento vertical de una pieza interior en forma de cuña que encaja en el cuerpo. Esta cuña interior puede estar recubierta de goma o de metal especial, por lo que la estanqueidad es muy buena.
Válvula de Bola
Sección Válvula de Bola.
La apertura y cierre se produce por el giro de una esfera que tiene un agujero transversal.
Al girar la maneta, también gira un eje, el cual está acoplado a una esfera, unas juntas de PTFE (teflón) garantizan la estanqueidad.
Válvula de Seguridad o de Alivio de Presión Componentes de una válvula
Cuerpo: Es la parte a través de la cuál transcurre el fluido.
Obturador: Es el elemento que hace que la sección de paso varíe, regulando el caudal y por tanto la pérdida de presión.
Accionamiento: Es la parte de la válvula que hace de motor para que el obturador se sitúe en una posición concreta. Puede ser motorizado, mecánico, neumático, manual o electromagnético.
Cierre: Une el cuerpo con el accionamiento. Hace que la cavidad del cuerpo y del obturador (donde hay fluido) sea estanco y no fugue.
Vástago: Es el eje que transmite la fuerza del accionamiento al obturador para que este último se posicione.
Características de válvulas
Materiales
Dependiendo del material utilizado en el cuerpo de la válvula, se denominan como válvulas de:
acero al carbono
acero inoxidable
acero aleado
Presión Nominal
Para estandarizar las válvulas se estipula diferentes presiones máximas a las que pueden trabajar. Se denomina con la sigla PN -valor establecido en bar- y se encuentra, generalmente, impreso en el cuerpo de la válvula.

miércoles, 5 de mayo de 2010

Fluido no-newtoniano
Un fluido no newtoniano es aquél cuya
viscosidad varía con la temperatura y presión, pero no con la variación dv/dy.
Aunque el concepto de viscosidad se usa habitualmente para caracterizar un material, puede resultar inadecuado para describir el comportamiento mecánico de algunas sustancias, en concreto, los fluidos no newtonianos. Estos fluidos se pueden caracterizar mejor mediante otras propiedades
reológicas, propiedades que tienen que ver con la relación entre el esfuerzo y los tensores de tensiones bajo diferentes condiciones de flujo, tales como condiciones de esfuerzo cortante oscilatorio.
Clasificacion de fluidos
Todos los líquidos se pueden clasificar como newtonianos o no-Newtonianos. Si la relación es lineal y el líquido tiene tensión cero a cero gradiente de velocidad, entonces es neutoniano. Sino cumple con esto es no-Newtoniano, teniendo distintas clasificaciones y subdivisiones basadas en la curva tensión de corte y su gradiente de la velocidad.
Para los líquidos no-Newtonianos, el gradiente de velocidad depende de la viscosidad; es decir, el líquido tiene una más alta o más bajo tensión dependiendo de su velocidad. De acuerdo a esto, se puede dar la siguiente subclasificacion.
NEWTONIANO
AguaLa mayoría de las soluciones de sal en aguaSuspensiones ligeras de tinteCaolín (mezcla de arcilla)Combustibles de gran viscosidadGasolinaKeroseneLa mayoría de los aceites del motorLa mayoría de los aceites mineral
NO-NEWTONIANO
PRODUCCIÓN SEUDOPLÁSTICA, BINGHAMPLÁSTICO, PRODUCCIÓN DILATANTE
ArcillaBArroAlquitránLodo de aguas residualesAguas residuales digeridasAltas concentraciones de incombustible en aceiteSoluciones termoplásticas del polímero
SEUDOPLÁSTICO
Lodo de aguas residualesCelulosaGrasaJabónPinturaTinta de la impresoraAlmidónSoluciones del látexLa mayoría de las emulsiones
DILATANTE
FeldespatoMicaArcillaArena de la playaArena movedizaAlmidón en agua
THIXOTROPIC - RHEOPECTIC
TintasLa mayoría de las pinturasCelulosa carboxymethylGel de siliconaGrasasAsfaltoAlmidónBentonitaSoluciones del yeso en agua
Clasificacion de fluidos
Todos los líquidos se pueden clasificar como newtonianos o no-Newtonianos. Si la relación es lineal y el líquido tiene tensión cero a cero gradiente de velocidad, entonces es neutoniano. Sino cumple con esto es no-Newtoniano, teniendo distintas clasificaciones y subdivisiones basadas en la curva tensión de corte y su gradiente de la velocidad.
Para los líquidos no-Newtonianos, el gradiente de velocidad depende de la viscosidad; es decir, el líquido tiene una más alta o más bajo tensión dependiendo de su velocidad. De acuerdo a esto, se puede dar la siguiente subclasificacion.
NEWTONIANO
AguaLa mayoría de las soluciones de sal en aguaSuspensiones ligeras de tinteCaolín (mezcla de arcilla)Combustibles de gran viscosidadGasolinaKeroseneLa mayoría de los aceites del motorLa mayoría de los aceites mineral
NO-NEWTONIANO
PRODUCCIÓN SEUDOPLÁSTICA, BINGHAMPLÁSTICO, PRODUCCIÓN DILATANTE
ArcillaBArroAlquitránLodo de aguas residualesAguas residuales digeridasAltas concentraciones de incombustible en aceiteSoluciones termoplásticas del polímero
SEUDOPLÁSTICO
Lodo de aguas residualesCelulosaGrasaJabónPinturaTinta de la impresoraAlmidónSoluciones del látexLa mayoría de las emulsiones
DILATANTE
FeldespatoMicaArcillaArena de la playaArena movedizaAlmidón en agua
THIXOTROPIC - RHEOPECTIC
TintasLa mayoría de las pinturasCelulosa carboxymethylGel de siliconaGrasasAsfaltoAlmidónBentonitaSoluciones del yeso en agua

Un ejemplo barato y no
tóxico de fluido no newtoniano puede hacerse fácilmente añadiendo almidón de maíz en una taza de agua. Se añade el almidón en pequeñas proporciones y se revuelve lentamente. Cuando la suspensión se acerca a la concentración crítica es cuando las propiedades de este fluido no newtoniano se hacen evidentes. La aplicación de una fuerza con la cucharilla hace que el fluido se comporte de forma más parecida a un sólido que a un líquido. Si se deja en reposo recupera su comportamiento como líquido. Se investiga con este tipo de fluidos para la fabricación de chalecos antibalas, debido a su capacidad para absorber la energía del impacto de un proyectil a alta velocidad, pero permaneciendo flexibles si el impacto se produce a baja velocidad.
Un ejemplo familiar de un fluido con el comportamiento contrario es la
pintura. Se desea que fluya fácilmente cuando se aplica con el pincel y se le aplica una presión, pero una vez depositada sobre el lienzo se desea que no gotee.
Dentro de los principales tipos de fluidos no newtonianos se incluyen los siguientes:
Tipo de fluido
Comportamiento
Características
Ejemplos
Plásticos
Plástico perfecto
La aplicación de una deformación no conlleva un esfuerzo de resistencia en sentido contrario
Metales dúctiles una vez superado el límite elástico
Plástico de Bingham
Relación lineal, o no lineal en algunos casos, entre el esfuerzo cortante y el gradiente de deformación una vez se ha superado un determinado valor del esfuerzo cortante
Barro, algunos coloides
Limite seudoplastico
Fluidos que se comportan como seudoplásticos a partir de un determinado valor del esfuerzo cortante
Limite dilatante
Fluidos que se comportan como dilatantes a partir de un determinado valor del esfuerzo cortante
Fluidos que siguen la Ley de la Potencia
seudoplástico
La viscosidad aparente se reduce con el gradiente del esfuerzo cortante
Algunos coloides,
arcilla, leche, gelatina, sangre.
Dilatante
La viscodidad aparente se incrementa con el gradiente del esfuerzo cortante
Soluciones concentradas de
azúcar en agua, suspensiones de almidón de maíz o de arroz.
Fluidos
Viscoelásticos
Material de Maxwell
Combinación lineal "serie" de efectos elásticos y viscosos
Metales, Materiales compuestos
Fluido Oldroyd-B
Combinación lineal de comportamiento como fludio Newtoniano y como material de Maxwel
Betún, Masa panadera, nailon, Plastilina
Material de Kelvin
Combinación lineal "paralela" de efectos elásticos y viscosos
Plástico
Estos materiales siempre vuelven a un estado de reposo predefinido
Fluidos cuya viscosidad depende del tiempo
Reopéctico
La viscosidad aparente se incrementa con la duración del esfuerzo aplicado
Algunos
lubricantes
Tixotrópico
La viscosidad aparente decrece con la duración de esfuezo aplicado
Algunas variedades de
mieles, kétchup, algunas pinturas antigoteo. Fluido newtoniano
Un fluido newtoniano es un fluido cuya viscosidad puede considerarse constante en el tiempo. La curva que muestra la relación entre el esfuerzo o cizalla contra su tasa de deformación es lineal y pasa por el origen, es decir, el punto [0,0]. El mejor ejemplo de este tipo de fluidos es el agua en contraposición al pegamento, la miel o los geles que son ejemplos de fluido no newtoniano.
Un buen número de fluidos comunes se comportan como fluidos newtonianos bajo condiciones normales de presión y temperatura: el aire, el agua, la gasolina, el vino y algunos aceites minerales.
Ecuación constitutiva
Matemáticamente, el rozamiento en un flujo unidimensional de un fluido newtoniano se puede representar por la relación:
Donde:
es la tensión tangencial ejercida en un punto del fluido o sobre una superficie sólida en contacto con el mismo, tiene unidades de tensión o presión ([Pa]).
es la viscosidad del fluido, y para un fluido newtoniano depende sólo de la temperatura, puede medirse en [Pa·s] o [kp·s/cm2].
es el gradiente de velocidad perpendicular a la dirección al plano en el que estamos calculando la tensión tangencial, [s−1].
La ecuación constitutiva que relaciona el tensor tensión y el gradiente de velocidad y la presión en un fluido newtoniano es simplemente:
Viscosidad y temperatura A medida que aumenta la temperatura de un fluido líquido, disminuye su viscosidad. Esto quiere decir que la viscosidad es inversamente proporcional al aumento de la temperatura. La ecuación de Arrhenius predice de manera aproximada la viscosidad mediante la ecuación:

Fluidos No Newtonianos
Un fluido newtoniano es una sustancia homogénea que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión, independientemente de la magnitud de ésta. En otras palabras, es una sustancia que debido a su poca cohesión intermolecular, carece de forma propia y adopta la forma del recipiente que lo contiene. Los líquidos son fluidos.
Un fluido no newtoniano es aquél cuya viscosidad (resistencia a fluir) varía con el gradiente de tensión que se le aplica, es decir, se deforma en la dirección de la fuerza aplicada. Como resultado, un fluido no-newtoniano no tiene un valor de viscosidad definido y constante, a diferencia de un fluido newtoniano.
Este tipo de fluidos se comportan como fluidos newtonianos cuando la tensión o fuerza aplicada es pequeña. Sin embargo sobre ellos se le aplica una tensión intensa en un corto espacio de tiempo, el material se estresa, aumentando su viscosidad proporcionalmente a dicha solicitud.
Otro tipo de fluidos no newtonianos son: algunos tipos de barros como los de arcilla, algunas variedades de mieles, algunos metales (en su estado fundido), algunos plásticos como la plastelina, el cemento o yeso con agua, etc.… Fluidos Newtonianos que son los que tienen un comportamiento normal, como por ejemplo el agua, tiene muy poca viscosidad y esta no varía con ninguna fuerza que le sea aplicada, si le damos un golpe a la superficie del agua en una piscina esta se deforma como es lógico.

martes, 13 de abril de 2010

proceso de producion de la azucar

Pasos para la producción del azúcar
•Molienda: La caña es sometida a un proceso de preparación que consiste en romper o desfibrar las celdas de los tallos por medio de picadoras. Luego unas bandas transportadoras la conducen a los molinos, donde se realiza el proceso de extracción de la sacarosa, consistente en exprimir y lavar el colchón de bagazo en una serie de molinos. El lavado del colchón de bagazo se hace con jugo extraído en el molino siguiente (maceración) y el lavado del último molino se hace con agua condensada caliente (imbibición), que facilita el agotamiento de la sacarosa en el bagazo y evita la formación de hongos y la necesidad de emplear bactericidas.

Clarificación:
El jugo proveniente de los molinos, una vez pesado en las básculas, pasa al tanque de alcalinización, donde se rebaja su grado de acidez y se evita la inversión de la sacarosa, mediante la adición de la lechada de cal. Este proceso ayuda a precipitar la mayor parte de las impurezas que trae el jugo. El jugo alcalinizado se bombea a los calentadores, donde se eleva su temperatura hasta un nivel cercano al punto de ebullición y luego pasa a los clarificadores continuos, en los que se sedimentan y decantan los sólidos, en tanto que el jugo claro que sobrenada es extraído por la parte superior..

Evaporación:Luego el jugo clarificado pasa a los evaporadores, que funcionan al vacío para facilitar la ebullición a menor temperatura. En este paso se le extrae el 75% del contenido de agua al jugo, para obtener el jarabe o meladura.

•Cristalización :La cristalización o cocimiento de la sacarosa que contiene el jarabe se lleva a cabo en tachos al vacío. Estos cocimientos, según su pureza, producirán azúcar crudo (para exportación o producción de concentrados para animales), azúcar blanco (para consumo directo) o azúcar para refinación. La cristalización del azúcar es un proceso demorado que industrialmente se acelera introduciendo al tacho unos granos de polvillo de azúcar finamente molido.


Separación o Centrifugación:
Los cristales de azúcar se separan de la miel restante en las centrífugas. Estas son cilindros de malla muy fina que giran a gran velocidad. El líquido sale por la malla y los cristales quedan en el cilindro, luego se lavan con agua.


Refinación:Mediante la refinación, se eliminan o reducen las materias coloidales, colorantes o inorgánicas que el licor pueda contener. El azúcar disuelto se trata con ácido fosfórico y sacarato de calcio para formar un compuesto floculante que arrastra las impurezas, las cuales se retiran fácilmente en el clarificador. El material clarificado pasa a unas cisternas de carbón que quitan, por adsorción.


Secado:El azúcar refinado se lava con condensado de vapor, se seca con aire caliente, se clasifica según el tamaño del cristal y se almacena en silos para su posterior empaque.






















martes, 9 de marzo de 2010

informe de laboratorio

Una actividad de laboratorio consiste en una o más experiencias donde se pretende una o
más de los siguientes objetivos: enseñar un principio de manera práctica, enseñar una
destreza, afianzar un principio.
A la hora de realizar un informe de laboratorio este aspecto debe tenerse muy en cuenta; el
alumno debe preguntarse ¿qué principio se ha mostrado o qué destreza se ha desarrollado o
qué principio se ha afianzado?
También debe tenerse presente que cada actividad de laboratorio debe poseer objetivos bien
definidos y en este sentido es útil que el alumno se pregunte por estos objetivos cuando se
realiza el informe.
No obstante, no sólo se deben tener presente estos aspectos durante la realización del
informe final, sino también y muy especialmente en la realización de la experiencia
propiamente dicha. Al respecto, las experiencias de laboratorio constituyen la forma de
conectar lo aprendido en las numerosas horas de teoría con los aspectos prácticos que, se
quiera o no, acompañan la mayor parte del quehacer laboral de ingenieros y científicos.

martes, 16 de febrero de 2010

quimica industrial


Química Industrial es la rama de la química que aplica los conocimientos químicos a la producción de forma económica de materiales y productos químicos especiales con el mínimo impacto adverso sobre el medio ambiente.

Aunque tradicionalmente se adaptaba a escala industrial un proceso químico de laboratorio, actualmente se modelizan cuidadosamente los procesos según su escala. Así, se ponen en juego fenómenos como la transferencia de materia o calor, modelos de flujo o sistemas de control que se agrupan bajo el término de Ingeniería Química.

Para la predicción de los efectos de los modelos de flujo de fluidos y calor, así como de la transferencia de cantidad de movimiento, y para la evaluación de efectos sólo abordables empíricamente, las plantas piloto a escala reducida son muy utilizadas, aprovechándose para el dimensionado definitivo y la selección de materiales y equipos.

La adaptación del laboratorio a la fábrica es la base de la industria química, que suele reunir en un solo proceso continuo y estacionario (aunque también opera por cargas) las operaciones unitarias que en el laboratorio se efectúan de forma independiente. Estas operaciones unitarias son las mismas sea cual sea la naturaleza específica del material que se procesa. Algunos ejemplos de estas operaciones unitarias son la molienda de las materias primas sólidas, el transporte de fluidos, la destilación de las mezclas de líquidos, la filtración, la sedimentación, la cristalización de los productos y la extracción de materiales de matrices complejas.

La Química industrial está en continua evolución. Modernamente van perdiendo importancia los procesos de producción en gran cantidad y de escaso valor añadido, frente a los productos específicos de gran complejidad molecular y síntesis laboriosa. Por otro lado, al tradicional aprovechamiento de subproductos y energía por motivos económicos se ha añadido la preocupación por el medio ambiente y los procesos sostenibles .

La metodología y la tecnología de la Química Industrial es la Ingeniería Química, la cual fue definida así por el Simposio Internacional sobre enseñanza de la Ingeniería Química,( Londres 1981)

“La Ingeniería Química es una disciplina en la que cuatro procesos de transferencia de calor, transferencia de materia, transferencia de cantidad de movimiento y cambio químico (incluyendo el cambio bioquímico) se combinan con las ecuaciones fundamentales de conservación y leyes de la Termodinámica para aclarar los fenómenos que tienen lugar en los equipos y en las plantas de proceso”.